skip to main content


Search for: All records

Creators/Authors contains: "Leifsson, Leifur T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The dynamic stall phenomenon produces adverse aerodynamic loading, which negatively affects the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides a practical approach for delaying and mitigating dynamic stall characteristics without the addition of an auxiliary system. A typical ASO investigation requires multiple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations. In the case of dynamic stall, unsteady CFD simulations are required for airfoil shape evaluation; combining it with high-dimensions of airfoil shape parameterization renders the ASO investigation computationally costly. In this study, metamodel-based optimization (MBO) is proposed using the multifidelity modeling (MFM) technique to efficiently conduct ASO investigation for computationally expensive dynamic stall cases. MFM methods combine data from accurate high-fidelity (HF) simulations and fast low-fidelity (LF) simulations to provide accurate and fast predictions. In particular, Cokriging regression is used for approximating the objective and constraint functions. The airfoil shape is parameterized using six PARSEC parameters. The objective and constraint functions are evaluated for a sinusoidally oscillating airfoil with the unsteady Reynolds-averaged Navier-Stokes equations at a Reynolds number of 135,000, Mach number of 0.1, and reduced frequency of 0.05. The initial metamodel is generated using 220 LF and 20 HF samples. The metamodel is then sequentially refined using the expected improvement infill criteria and validated with the normalized root mean square error. The refined metamodel is utilized for finding the optimal design. The optimal airfoil shape shows higher thickness, larger leading-edge radius, and an aft camber compared to baseline (NACA 0012). The optimal shape delays the dynamic stall occurrence by 3 degrees and reduces the peak aerodynamic coefficients. The performance of the MFM method is also compared with the single-fidelity metamodeling method using HF samples. Both the approaches produced similar optimal shapes; however, the optimal shape from MFM achieved a minimum objective function value while more closely satisfying the constraint at a computational cost saving of around 41%. 
    more » « less
  2. null (Ed.)